AccueilBlogThéorie des Lignes de Transmission
Théorie et Fondamentaux

Théorie des Lignes de Transmission pour la Conception de PCB

Maîtrisez la théorie des lignes de transmission pour la conception de PCB haute vitesse. Comprenez l'impédance caractéristique, le délai de propagation, les réflexions et les stratégies d'adaptation avec des exemples pratiques.

Lorsque les temps de montée des signaux deviennent comparables au délai de propagation, les pistes se comportent comme des lignes de transmission. Ce guide fournit les fondements théoriques et les connaissances pratiques nécessaires pour concevoir des interconnexions PCB haute vitesse fiables.

Équipe Intégrité du Signal18 min de lecture

Introduction à la Théorie des Lignes de Transmission

La théorie des lignes de transmission décrit comment les ondes électromagnétiques se propagent le long des conducteurs. Dans la conception de PCB, les pistes deviennent des lignes de transmission lorsque leur longueur électrique approche la longueur d'onde du signal. Comprendre ce comportement est essentiel pour concevoir des circuits numériques et RF haute vitesse fiables.

Pourquoi la Théorie des Lignes de Transmission est Importante

Intégrité du Signal
Prévenir les réflexions et sonneries
Synchronisation
Prédiction précise du délai
Transfert de Puissance
Efficacité maximale
EMC
Émissions réduites

Quand les Effets de Ligne de Transmission S'Appliquent

Toutes les pistes ne sont pas des lignes de transmission. Le facteur critique est la relation entre le délai de propagation de la piste et le temps de montée/descente du signal. Lorsque le délai de la piste dépasse environ 1/6 du temps de montée, les effets de ligne de transmission deviennent significatifs.

Calcul de la Longueur Critique

Formule de Longueur Critique :

L_critical = (Rise Time × c) / (6 × √εᵣ)

Où c = vitesse de la lumière (3×10⁸ m/s), εᵣ = constante diélectrique effective

Exemples de Calculs :

1 ns montée
~2.5 cm
500 ps montée
~1.25 cm
100 ps montée
~2.5 mm

Signaux Haute Vitesse Modernes

Avec les interfaces haute vitesse d'aujourd'hui, presque toutes les pistes sont des lignes de transmission :

  • • DDR4/DDR5: 50-100 ps taux de transition longueur critique ~2-4 mm
  • • PCIe Gen4/5: 35-50 ps taux de transition longueur critique ~1-2 mm
  • • USB 3.2: 50-80 ps taux de transition longueur critique ~2-3 mm
  • • 10G Ethernet: 30-40 ps taux de transition longueur critique ~1 mm

Paramètres de Ligne de Transmission

Une ligne de transmission est caractérisée par quatre paramètres distribués : résistance (R), inductance (L), conductance (G) et capacité (C) par unité de longueur. Ces paramètres RLGC déterminent tout le comportement de la ligne de transmission.

Paramètres RLGC

R - Résistance Série
  • Résistance DC du conducteur
  • Augmente avec la fréquence (effet de peau)
  • Unités : Ω/m
  • Provoque l'atténuation du signal
L - Inductance Série
  • Inductance propre et mutuelle
  • Dépend de la géométrie
  • Unités : H/m
  • Affecte l'impédance et le délai
G - Conductance Parallèle
  • Fuite diélectrique
  • Lié à la tangente de perte
  • Unités : S/m
  • Généralement faible aux basses fréquences
C - Capacité Parallèle
  • Entre conducteur et référence
  • Dépend de la géométrie et εᵣ
  • Unités : F/m
  • Affecte l'impédance et le délai

Impédance Caractéristique

L'impédance caractéristique (Z₀) est le rapport entre la tension et le courant d'une onde se propageant le long de la ligne. Elle ne dépend que de la géométrie de la ligne et des matériaux, pas de la longueur ou de l'adaptation.

Formules d'Impédance Caractéristique

Formule Générale (Sans Pertes) :

Z₀ = √(L/C)

Formule Générale (Avec Pertes) :

Z₀ = √((R + jωL)/(G + jωC))

Valeurs Typiques :

Single-ended
50Ω typique
Différentiel
100Ω typique
DDR
40-60Ω

Propagation et Délai

Les signaux se propagent le long des lignes de transmission à la vitesse de propagation, qui est plus lente que la vitesse de la lumière dans le vide en raison du matériau diélectrique.

Paramètres de Propagation

Vitesse de Propagation :

v = c / √εᵣ_eff = 1 / √(LC)

Pour FR-4 (εᵣ ≈ 4,4) : v ≈ 0,48c ≈ 144 mm/ns

Délai de Propagation :

t_pd = L / v = L × √(εᵣ_eff) / c

Pour FR-4 : environ 6-7 ps/mm ou 150-170 ps/pouce

Implications de l'Adaptation de Délai

  • 1 mm de différence de longueur ≈ 6-7 ps de différence de délai
  • Les transitions via ajoutent ~10-30 ps selon le type de via
  • Les changements de couche affectent εᵣ_eff et donc la vitesse de propagation

Réflexions et VSWR

Lorsqu'un signal rencontre une discontinuité d'impédance, une partie de l'onde se réfléchit vers la source. Le coefficient de réflexion quantifie cet effet.

Coefficient de Réflexion

Coefficient de Réflexion (Γ) :

Γ = (Z_L - Z₀) / (Z_L + Z₀)

Plage : -1 (court-circuit) à +1 (circuit ouvert), 0 = adapté

VSWR (Rapport d'Onde Stationnaire) :

VSWR = (1 + |Γ|) / (1 - |Γ|)

Plage : 1:1 (adaptation parfaite) à ∞:1 (désadaptation complète)

Effets de Réflexion dans les Signaux Numériques

  • Dépassement/sous-dépassement : Peut dépasser les tensions nominales des CI
  • Sonnerie : Réflexions multiples causent des oscillations
  • Erreurs de synchronisation : Flancs non monotones causent de faux déclenchements
  • EMI: Les réflexions créent des ondes stationnaires qui rayonnent

Stratégies d'Adaptation

L'adaptation élimine les réflexions en faisant correspondre l'impédance de ligne aux points critiques. Différents schémas d'adaptation ont différents compromis.

Types d'Adaptation

Adaptation Série (Source)
  • Résistance à la sortie du driver
  • • R = Z₀ - R_driver
  • Faible consommation
  • Demi-amplitude au récepteur initialement
  • Fonctionne pour point-à-point
Adaptation Parallèle (Charge)
  • Résistance au récepteur
  • • R = Z₀
  • Amplitude complète immédiatement
  • Consommation plus élevée (chemin DC)
  • Bon pour les bus multi-points
Adaptation Thevenin
  • Résistances de pull-up et pull-down
  • Définit le point de polarisation DC
  • 2R chacun pour Z₀ parallèle
  • Consommation plus élevée que parallèle
  • Bon pour les signaux biaisés
Adaptation AC (RC)
  • R-C série au récepteur
  • Bloque le DC, adapte l'AC
  • Faible consommation
  • Réponse basse fréquence limitée
  • Bon pour les signaux périodiques

Structures de Lignes de Transmission PCB

Différentes structures de routage PCB ont différentes caractéristiques d'impédance et conviennent à différentes applications.

Types Courants de Lignes de Transmission PCB

Microstrip

Piste sur couche externe avec plan de masse en dessous. Structure la plus courante.

  • Impédance plus élevée pour une largeur donnée
  • Exposé à l'environnement (problèmes EMI)
  • Plus facile à sonder/déboguer
  • • εᵣ_eff < εᵣ (air au-dessus de la piste)
Stripline

Piste entre deux plans de masse (couche interne).

  • Meilleur blindage, EMI plus faible
  • Impédance plus faible pour une largeur donnée
  • • εᵣ_eff = εᵣ (entièrement intégré)
  • Plus difficile d'accès pour le débogage
Guide d'Ondes Coplanaire

Piste avec plans de masse sur la même couche (avec ou sans masse en dessous).

  • Bon pour RF et haute vitesse
  • Accès facile à la masse pour les vias
  • Diaphonie réduite vers les pistes adjacentes
  • Plus de surface PCB requise

Lignes de Transmission Différentielles

La signalisation différentielle utilise deux signaux complémentaires. La paire différentielle a différents modes d'impédance qui doivent être compris pour une conception appropriée.

Modes d'Impédance Différentielle

Mode Différentiel (Zdiff) :

Z_diff = 2 × Z_odd = 2 × Z₀ × (1 - k)

Où k = coefficient de couplage. Couplage plus serré → Zdiff plus faible.

Mode Commun (Zcm) :

Z_cm = Z_even / 2 = Z₀ × (1 + k) / 2

Important pour l'immunité au bruit en mode commun.

  • Maintenir un espacement constant tout au long du routage de la paire différentielle
  • Faire correspondre les longueurs de piste dans la paire à <5% du temps de montée
  • Éloigner les paires différentielles des signaux single-ended

Mécanismes de Perte

L'atténuation du signal dans les lignes de transmission PCB provient des pertes conductrices (résistives) et des pertes diélectriques. Les deux augmentent avec la fréquence.

Composantes de Perte

Perte Conductrice
  • Résistance DC de la piste
  • Effet de peau à haute fréquence
  • Effet de rugosité de surface
  • Augmente comme √f
Perte Diélectrique
  • Proportionnel à la tangente de perte (tan δ)
  • Augmente linéairement avec la fréquence
  • Domine aux très hautes fréquences
  • • FR-4: tan δ ≈ 0.02

Atténuation des Pertes

  • Utiliser des pistes plus larges (résistance plus faible)
  • Choisir des diélectriques à faible perte (tan δ < 0,005)
  • Spécifier du cuivre lisse pour les couches haute vitesse
  • Minimiser la longueur de piste

Méthodes de Simulation

La simulation de ligne de transmission prédit le comportement du signal avant la fabrication. Différentes approches de simulation servent différents objectifs.

Approches de Simulation

Solveurs de Champ 2D
  • Calcule Z₀, délai, couplage
  • Rapide, bon pour la conception initiale
  • Suppose une section uniforme
  • Exemples : Saturn, Polar SI
Simulation EM 3D
  • Analyse électromagnétique complète
  • Gère les discontinuités, vias
  • Intensif en calcul
  • Exemples : HFSS, CST
Simulation SPICE
  • Formes d'onde temporelles
  • Utilise des modèles extraits
  • Analyse de diagramme en œil
  • Exemples : HyperLynx, SIwave
Modélisation IBIS
  • Comportement driver/récepteur IC
  • Format non-propriétaire
  • Utilisé avec des modèles de canal
  • IBIS-AMI pour SerDes

Règles de Conception de Lignes de Transmission

Règles de Conception Essentielles

  • Contrôler l'impédance à ±10% ou mieux
  • Adapter correctement toutes les lignes de transmission
  • Minimiser les discontinuités d'impédance
  • Router sur des plans de référence continus
  • Ajouter des vias de masse aux transitions de couche
  • Faire correspondre les longueurs dans les paires différentielles
  • Utiliser une conception de via appropriée pour haute vitesse
  • Simuler les nets critiques avant la mise en page

Points Clés

  • Traiter les pistes comme des lignes de transmission lorsque la longueur dépasse la longueur critique
  • L'impédance caractéristique dépend de la géométrie et des matériaux, pas de la longueur
  • Les discontinuités d'impédance provoquent des réflexions qui dégradent les signaux
  • Une adaptation correcte élimine les réflexions
  • Les paires différentielles nécessitent une attention aux modes différentiel et commun
  • Les pertes augmentent avec la fréquence—à considérer pour les longues pistes

Calculateurs Connexes

Utilisez nos calculateurs de ligne de transmission :